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Teaching along with training on Machine Learning (ML) and Big Data in

Mexican universities has become a necessity that requires the

application of courses, handbooks, and practices that allow

improvement in the learning of Data Science (DS) and Artificial

Intelligence (AI) subjects. This work shows how the academy and the

Information Technology industry use tools to analyze large volumes of

data to support decision-making, which is hard to treat and interpret

directly. A solution to some large-scale national problems is the

inclusion of these subjects in related courses within specialization

areas that universities offer. The methodology in this work is as

follows: 1) Selection of topics and tools for ML and Big Data teaching,

2) Design of practices with application to real data problems, and 3)

Implementation and/or application of these practices in a

specialization diploma. Results of a survey applied to academic staff

and students are shown. The survey respondents have already taken

related courses along with those specific topics that the proposed

courses and practices will seek to strengthen, developing needed

skills for solving problems where ML/DL and Big Data are an

outstanding alternative of solution.
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Abstract. Teaching along with training on Machine Learning (ML) and Big Data 
in Mexican universities has become a necessity that requires the application of 
courses, handbooks, and practices that allow improvement in the learning of Data 
Science (DS) and Artificial Intelligence (AI) subjects. This work shows how the 
academy and the Information Technology industry use tools to analyze large 
volumes of data to support decision-making, which is hard to treat and interpret 
directly. A solution to some large-scale national problems is the inclusion of these 
subjects in related courses within specialization areas that universities offer. The 
methodology in this work is as follows: 1) Selection of topics and tools for ML 
and Big Data teaching, 2) Design of practices with application to real data 
problems, and 3) Implementation and/or application of these practices in a 
specialization diploma. Results of a survey applied to academic staff and students 
are shown. The survey respondents have already taken related courses along with 
those specific topics that the proposed courses and practices will seek to 
strengthen, developing needed skills for solving problems where ML/DL and Big 
Data are an outstanding alternative of solution. 

Keywords: Machine Learning, Deep Learning, Big Data, Data Science, 
Teaching Skills. 

1 Introduction 

The use of tools that allow the analysis of large volumes of data has allowed exact 
sciences to play an important role for decision-making in organizations [1]. In the 
Bachelor of Information Technologies for Sciences (ITCs) of the Escuela Nacional de 



Estudios Superiores (ENES) Morelia, Mexico, there are subjects related to Data 
Science (DS) [2] that are included in the curriculum starting from the 6th semester, 
known as subjects of the deepening area, and that represent a challenge for students 
when trying to put the theory learned into practice, in addition to lacking the necessary 
tools for its application in real problems. The need for teachers and students to know 
new frontiers in Artificial Intelligence (AI) is observed, specifically in the application 
of mathematical models of Machine Learning (ML). ML is the branch of AI that is 
responsible for developing techniques, algorithms, and programs that give computers 
the ability to learn. A machine learns each time it changes its structure, programs, or 
data, based on input or in response to external information, in such a way that better 
performance is expected in the future [3]. 

In [4] Deep learning (DL) is used to explain new architectures of Neural Networks 
(NN) that are capable of learning. DL is a class of ML techniques that exploit many 
layers of nonlinear processing for extraction and transformation of supervised and 
unsupervised features and pattern analysis and classification [5]. The 21st century has 
become the golden age for AI; this is due, in large part, to a greater computing capacity 
and the use of GPUs to speed up the training of these systems, with the ingestion of 
large amounts of data. Currently, numerous frameworks have ML and DL tools 
implemented, such as PyTorch [6], fast.ai [7], TensorFlow [8], Keras [9], DL4J [10], 
among others. Some of the main uses of DL today are, for example, identifying brand 
names and company logos in photos posted on social media, real-time monitoring of 
reactions on online channels during product launches, ad recommendation and 
prediction of preferences, as well as identification and monitoring of customer 
confidence levels, among others. The use of AI has allowed a better understanding of 
genetic diseases and therapies, the analysis of medical images (such as X-rays and 
magnetic resonance imaging) increasing the accuracy of diagnosis in less time and at a 
lower cost than traditional methods [11]. The DL forms a subcategory of the ML. To 
differentiate it from the rest of ML algorithms, it uses the fact that large-scale NNs 
allow a machine to learn to recognize complex patterns by itself, which is difficult to 
achieve with them [12]. A NN is made up of several layers or levels and a certain 
number of neurons in each of them, which constitute the processing unit, whose 
mathematical model allows having several data inputs and an output that is the 
weighting of their inputs [13] [14].  The connections of several neurons within an NN 
constitute a powerful parallel computation tool, capable of delivering approximate and 
non-definitive outputs. Furthermore, NNs can be structured in various ways and can be 
trained with various types of algorithms [15]. On the other hand, the Internet of Things 
(IoT) and industry 4.0 have required the introduction of autonomous and intelligent 
machinery in the industrial sector [16]. In this industry, Convolutional Neural Networks 
(CNN) are applied, which are a type of DL that is inspired by the functioning of the 
visual cortex of the human brain and differs from the other NNs by the fact that each of 
the neurons of the layers that compose it does not receive incoming connections from 
all the neurons of the previous layer, but only from some of them. This simplifies the 
learning of the network, generating lower computational and storage costs. All of the 
above mentioned makes DL models more accurate [12]. 

The main contribution of this paper is to present a proposal to improve the learning 
of ML, DL, and Big Data subjects with practical training focused on real-life use cases. 
The rest of the paper is organized as follows: Section 2 describes the work related to 



AI (ML, DL, and Big Data) and the implementation of its teaching in courses or 
diplomas oriented to data science. It shows the difficulty of the students in learning and 
applying the topics of ML and DL in data analysis. This problem must be solved with 
a practical approach or orientation. Section 3 describes the methodology used to 
develop the improvement proposal. Section 4 presents the results, as well as a brief 
discussion of them. Finally, Section 5 presents the conclusions obtained from the 
developed proposal. 

2 Related Work 

In current terms [17] explains that within AI there is a branch called ML whose purpose 
is to improve the performance of algorithms through their experience. The ML uses 
statistics, computer science, mathematics, and computational sciences having its 
foundation in data analysis. The definition coincides with other proposals that consider 
ML as the technique of creating systems that are capable of learning by themselves, 
using large volumes of data, making them suitable for analysis and, thus, being able to 
predict future behavior [18]. Regarding the ML as an area [12] points out that there are 
different approaches for the design of these systems. The approaches are divided into 
supervised, unsupervised and by reinforcement, if the system is trained under human 
supervision or not (the most used division); online or offline learning, whether the 
system can learn on the fly or not; and, finally, in instance-based learning or model-
based learning, if the system detects training patterns or if it compares new data against 
existing data. 

The supervised ML approach is used when you already have data, and you know the 
response you want to predict. This knowledge is then used to predict the labels of new 
data whose label is unknown. The main problems that are solved with this type of 
learning are regression (predicting the future value of a given element, whose values 
can only be numerical, from relevant characteristics and previous values [19]) and 
classification (assigning a label to a given element, from a discrete set of possibilities 
[20]). 

In the unsupervised ML approach, the data is not labeled, this means that the system 
must learn by itself without being told if the classification is correct or not [21]. To 
classify the data, a grouping technique is used whose objective is to combine data 
whose characteristics are like each other [22]. 

Regarding the reinforcement ML approach, the goal is that the system learns in an 
environment in which the only feedback consists of a scalar reward, which can be 
positive or negative (punishment) [23]. That is, the system receives in each iteration a 
reward and the current state of the environment, then takes an action according to these 
inputs and what results is considered as an output, which will change the state in the 
next iteration [24]. 

The arguably most used algorithms of supervised ML are linear or logistic 
regression, for regression [25]; and decision trees, k-nearest neighbors, support vector 
machines or artificial NNs, for classification [26]. The algorithms for unsupervised ML 
are k-means, visualization and dimensionality reduction or association rules [27]. 

In relation to artificial NNs, they serve to solve both regression and classification 
problems and even some unsupervised learning problems. Due to its versatility and 



performance that have recently surpassed even human performance (at the cost of 
having example data in large quantities that the IoT has allowed to obtain). 

The study of DL began in 1943 as a computer model inspired by the NNs of the 
human brain [28], however, it was not until 1985 that in [29] it was demonstrated that 
backpropagation in a NN could provide distribution representations of great utility for 
learning, generating a reborn interest in the area. 

In [30] the first practical demonstration of backpropagation is provided. The team 
combined CNNs with backpropagation to read handwritten digits in a system that, 
finally, was used to read handwritten check numbers.  The model was based on the 
hierarchical multi-layer design (CNNs) inspired by the human visual cortex of the 
Neocognitron, introduced in 1979 [31]. 

In the late 1990s, the problem of the fading or exploding gradient was detected in 
DL models. The problem originates in the activation functions of artificial neurons 
whose gradient (based on the derivative) decreased when calculated in each layer, until 
it reached practically zero (or tended to an infinite value); which implies loss of 
learning. The proposed solution is to store the gradient within the network itself [32] or 
to make it enter a layer and simultaneously avoid it through skip connections [33]. 

In [32] Recurrent NNs (RNNs) of the Long Short-Term Memory (LSTM) type are 
proposed, which specialize in the analysis and prediction of time series and problems 
that must recall previous states, such as Natural Language Processing (NLP). In 
addition, this architecture allows to solve the gradient problems mentioned above. 

In 2009 ImageNet [34] was launched, a free, tagged database of more than 14 million 
images, which features a thousand different categories of objects as varied as 120 dog 
breeds. With this resource and coupled with the computing power that the evolution of 
GPUs already had by 2011, it became possible to train CNNs without the previous 
training (layer by layer) and considering architectures with an increasing number of 
these (hence the term DL). 

The examples that can be mentioned of the efficiency and speed that DL algorithms 
have achieved are the computer vision algorithms that were winners in the ImageNet 
Large Scale Visual Recognition Challenge (LSVRC) [35] between the years of 2012 
up to 2017 (all CNNs architectures), whose main challenge is based on the classification 
of images from the ImageNet database and that, as of 2017, it is considered solved in 
practice and with superior performance to that of the human being. 

To our knowledge, there are very few works in the recent literature related to the 
improvement of AI teaching. Some of the most representative ones are mentioned 
below, as a review of the approaches they address and that are aimed at teaching AI as 
a secondary objective or use case. 

According to [36] ML is a discipline that focuses on building a computer system that 
can improve itself using experience. ML models can be used to detect patterns from 
data and recommend strategic marketing actions, showing how educators can improve 
the teaching of these topics using the AI approach. The availability of Big Data has 
created opportunities and challenges for professionals and academics in the area. 
Therefore, study programs must be constantly updated to prepare graduates for rapidly 
changing trends and new approaches. In [37] it is described that the pandemic caused 
by the COVID-19 virus, the advent of Industry 4.0 confronts graduate students with the 
need to develop competencies in ML, which are applied to solve many industrial 
problems that require prediction and classification, and the availability and 



management of large amounts of data. The proposal of how to apply AI practices in a 
virtual laboratory is shown, in addition to evaluating the performance of students in this 
type of environment. In the same way, in [38], an innovative practice of teaching 
applied ML to first-year multidisciplinary engineering university students is proposed, 
using a learning tool that consists of a public repository in the cloud and a course 
project. A set of practices for ML and how to apply it in real cases is offered as a use 
case for online collaborative work. The inclusion of DL and Big Data is mentioned as 
future work. 

In Mexico, there are many academic degrees oriented to DS, ML, and DL.  However, 
there are no uniform curricula on the areas of knowledge, topics, and tools that students 
require. In this paper, we offer an alternative way to solve this problem based on the 
experience of a public university such as the ENES Morelia - UNAM. 

3 Methodology 

Based on the review of the literature, a series of steps were generated, which allowed 
us to obtain the level of knowledge that the ENES Morelia population has about ML/DL 
and thus be able to define axes that support the design of the pedagogical strategy that 
will give rise to the proposal of a uniform curriculum through courses of practical 
experience. The present research is characterized by being a study of type: 1) 
exploratory, 2) descriptive, 3) correlational and 4) pre-experimental to have a case study 
through a single measurement. To this end, a survey was generated that was applied to 
a population made up of professors, students, and researchers of the UNAM (Morelia, 
Michoacan campus). The methodology followed for this work is shown in Fig. 1. 
Results of the analysis of the application of this survey and the monitoring of test groups 
are described in the following sections. 
 

 
Fig. 1. Block diagram of the methodology used in this work. 



3.1 Population 
Primarily the survey was created through the “e-Encuesta®” Web platform and 
distributed via email and social media to randomly selected individuals affiliated with 
the campus mentioned before. In the first place, the sample was calculated using the 
finite population method based on 600 people. This sample has a confidence interval 
of 95% and a margin of error of 10%, as shown in Table 1. The link to the survey within 
the Web platform was distributed through the official email of students and teachers. It 
was validated that the information in each of the answers was consistent and complete. 

Table 1. Population sample. 

Description Value 
Population size 600 
Trust level 95% 
Margin of error 10% 
Sample size 83 

 
3.2 Survey 
An eight-question survey was generated from a critical review of the literature related 
to DS of ML, DL and Big Data. Experts on the subject validated the selected questions. 
Its measurement was: a) different options, b) dichotomous responses, and c) Likert 
scale. The survey was refined by dividing it into four axes: Axis I: Machine Learning; 
Axis II: Deep Learning; Axis III: Big Data; and Axis IV. Tools, as shown in Table 2. 
Likert scale applied was: Very important, Important, Neutral, Less important, Nothing 
important, I do not know. 

Table 2. Survey questions and format. 

# Question description Axis Type 
Q1 UNAM account or employee number, your name if you do not 

have them 
- Options 

Q2 Bachelor's degree you are studying; 2.1 Sciences, 2.2 
Agroforestry, 2.3 Environmental Sciences, 2.4 Sustainable 
Materials Science, 2.5 Ecology, 2.6 Social Studies and Local 
Management, 2.7 Geosciences, 2.8 Geohistory, 2.9 
Information Technologies in Sciences, 2.10 Other 

- Options 

Q3 Semester you are studying (1-12), does not apply to teachers 
and researchers 

- Number 



# Question description Axis Type 
Q4 You consider the following topics related to ML to be: 4.1 

Data Science, 4.2 Web Scraping, 4.3 Data Wrangling, 4.4 
Machine Learning, 4.5 Data Mining, 4.6 Ensemble Learning, 
4.7 Data visualization, 4.8 ML: supervised/unsupervised, 4.9 
Binary and multiclass classification, 4.10 EDA, 4.11 
Clustering, 4.12 ML model, 4.13 ML evaluation: underfitting, 
overfitting, 4.14 Cross validation, 4.15 Hyperparameters, 
regularization, feature engineering, 4.16 PCA 

I Likert options 

Q5 You consider the following topics related to DL to be: 5.1 NN 
Shallow & Deep, 5.3 CNN, 5.3 RNN, 5.4 Transfer Learning & 
Fine-Tuning, 5.5 Dropout, 5.6 Data Augmentation, 5.7 Batch 
Normalization  

II Likert Options 

Q6 You consider the following topics related to Big Data to be: 
6.1 Concept, 6.2 Model Scaling, 6.3 Large-Scale Analytics, 
6.4 Distributed File System, 6.5 Map-Reduce   

III Likert Options 

Q7 Skills you have in handling the following tools is: 7.1 
TensorFlow, 7.2 Spark, 7.3 Keras, 7.4 Fast.ai, 7.5 PyTorch, 
7.6 HDFS, 7.7 Kafka, 7.8 Python, 7.9 Scikit-Learn 

IV Likert Options 

Q8 Is it important to include some additional topics related to ML, 
DL and Big Data, not mentioned above? 

- Open 

3.3 Data Analysis 
In the second place, with the information obtained from the survey, descriptive analyses 
were generated, where the reliability study was carried out applying Cronbach’s Alpha 
obtaining as a result 0.956 and demonstrating that the information obtained is 
consistent. Third, the study of correlations was applied using Pearson’s bivariate and 
selecting only the correlations obtained at the high and very high levels [0.7-0.93], 
shown in Fig. 2. 

 
Fig. 2. Correlation matrix (heat map). See Table 1, for tag details. 



According to the analysis of correlations, we identify areas of opportunity according to 
percentage of importance (scale) that the respondents answered. In Fig. 3 this 
importance is shown. 
 

   
a) ML importance level                b) DL importance level 

    
c) Big Data importance level          d) Tools importance level 

Fig. 3. Level of importance (Likert) according to survey respondents; a) ML, b) DL, 
c) Big Data and d) Tools. See Table 1, for tag details. 

4 Results and Discussion 

According to the developed survey, a certain lack of knowledge of the respondents was 
observed in some topics. In Fig. 4 topics are shown by axis, ordered by level of 
unfamiliarity: I do not know (dnK), Nothing important (NImp), Less Important (LImp), 
Neutral, Important (Imp), Very Important (VImp).  And, for tools, scale is: I do not 
know (dnK), Short, Half, and High. 
 



  

  
Fig. 4. Levels of unfamiliarity by axes. See Table 1, for tag details. 

Based on the analysis of these results and considering the classic progression in recent 
literature, regarding the teaching of basic topics of ML, DL, and Big Data; coupled with 
our personal experience in teaching courses on these topics, at the undergraduate level 
and more of them aimed at teachers in the area of Information Technology, it is 
proposed to improve learning with practical training to strengthen those topics with the 
greatest lack of knowledge (dnK level of unfamiliarity in Fig. 4). This practical 
knowledge is shown in Tables 3 and 4 as a series of practices we recommended to take 
advantage of these areas for improvement. It was observed that respondents prefer an 
intervention oriented towards the practical application of knowledge. 

Table 3. Proposed ML practices. 

# Name Dataset Evaluation 
Metric 

Description 

1 Classification 
using decision 
trees 

Titanic 
passengers 
[39] 

Accuracy 
and/or Fbeta 
Metrics 

Build a decision tree for the survival 
analysis of Titanic passengers 
(Classification) 

2 Housing cost 
prediction  

California 
Housing 
[40] 

RMSE 
and/or MAE 

Build a real estate cost prediction 
model. (Linear Regression/Logistic 
Regression) 

3 k-Nearest 
Neighbors  

Water wells 
[41] 

Precision 
Score Fbeta 

Build a prediction model of water 
well uses. (Supervised). 

4 k-Means Online 
Retail K-
means & 
Hierarchical 
Clustering 
[42] 

Not 
applicable 

Design a model to classify the 
transactions of a bank's customers.  
(No supervised). 



# Name Dataset Evaluation 
Metric 

Description 

5 Installing and 
using Dask 
[43] 

Not 
applicable 

Not 
applicable 

Show Dask installation and how it is 
used for Big Data manipulation 

6 Installing and 
Using HDFS 
[44] 

Not 
applicable 

Not 
applicable 

Teaching how the installation of 
HDFS and its basic use is carried out. 

7 Weather 
forecasting  

RUOA 
(UNAM, 
2015) [45] 

RMSE 
and/or MAE 

Analyze climate data from the RUOA 
to predict weather on a daily horizon. 
(Linear Regression) 

9 Car Price 
Prediction  

100,000 UK 
Used Car 
Data set 
[46] 

RMSE 
and/or MAE 

Analyze car data to estimate prices. 
(Multiple regression) 

10 Special case Public data 
information 

Several Analyze data to apply the best 
strategy to solve a problem 

Table 4. Proposed DL practices. 

# Name Dataset Evaluation 
Metric 

Description 

1 Binary 
classification 
with CNN 

800 images of 
mosquitoes, 
UNAM [47] 

Accuracy Differentiate between species 
Aedes Albopictus and Aedes 
Aegypti. (Visualization) 

2 Binary 
classification 
with CNN 

Covid-19 
Pneumonia 
Screening [48] 

Precision & 
Confusion 
Matrix. 

X-ray tomography analysis for 
identification of lungs affected by 
the SARS-CoV-2 virus. 

3 CNN & Data 
Augmentation 

Ship 
Classification 
[49] 

Precision & 
Confusion 
Matrix. 

Classification of 6,252 images of 
ships (5 categories) 

4 RNN Sarcasm 
Detection  
[50] 

Accuracy 
and 
precision. 

Identify news titles that are 
sarcastic or satirical. (NLP) 

5 Installing and 
using PyTorch 
over Dask 

Not applicable Not 
applicable 

Installation and use of PyTorch in 
Dask  

6 Transfer 
Learning 

Sports Images 
[51] 

Precision 
and 
accuracy 

Classification of sports images. 

5 Conclusions 

By the experience of practical teaching to a mix of students and teachers of the Morelia 
campus of the UNAM university, divided into two heterogeneous groups, concerning 



applying the proposed practices, two courses were offered according to the diploma 
described below [52]: 
 

MODULE I. Machine Learning (ML). "Theory and Practice for the Improvement of 
the Teaching of ML Applied to Data Science". Topics: 1. Artificial Intelligence and 
Machine Learning, 2. Phases of an ML Project, 3. Regression Methods, 4. 
Classification Methods, 5. Prediction Methods, 6. Supervised Learning, 7. 
Unsupervised Learning, 8. Metrics.  Practices to be Developed: See Table 3. 

 
MODULE II. Deep learning (DL). "Theory and Practice for the Improvement of the 

Teaching of DL Applied to Data Science". Topics: 1. Artificial Intelligence and Deep 
Learning (DL), 2. Phases of a DL Project, 3. Convolutional Neural Networks (CNNs), 
4. Learning Transfer, 5. Recurrent Neural Networks (RNNs), 6. Visualization and 
Treatment of Natural Language Processing (NLP).  Practices: See Table 4. 

 
 Tools used in the diploma: Anaconda Python, Scikit-Learn, Matplotlib, Dask, 

PyTorch, fast.ai 2, TensorFlow, Keras, HDFS, among others. 
 
At the end of the first course where the intervention was carried out, it was observed 

that 50% of the attendees, of a total of 40, had various problems solving practices. These 
problems are shown as percentages of solved practices in Fig. 5. In this figure, the 
expected results (according to our experiences in previous courses) are compared 
against the actual results, as practices solved and delivered by the attendees. In addition, 
the figure shows the efficiency of teaching according to: 

%efficiency = 100 * (solved practices - expected practices)/expected practices    (1) 

Fig. 5. ML teaching effectiveness. 



We observed that students quit working on the most complex practices of ML. Reasons 
were the increase in data analysis tasks, on top of having to apply statistical and 
mathematical theory using a programming language (Python). The solution to these 
problems is to give higher priority to practice with real data than to abstract theory. 

In works similar to this one, the teaching of ML is used only as a use case to address 
education in other topics in real cases; indeed, with the AI approach, but no 
improvements are made to the teaching of ML itself, nor experiences on how to 
improve the teaching of data science are included. The practical proposal in this work 
allows for establishing a more complete and broad curriculum, concerning the fact that 
it includes not only the ML but the DL, the Big Data, and the computer tools associated 
with data science as well. 

Our proposal is still under development and, among other issues, it is necessary to 
evaluate the efficiency of teaching according to this practical approach in a DL course, 
as well as including other tools that may help facilitate the learning of data science. All 
this, in addition to including learning platforms as well as other tools that can help 
facilitate data science learning, such as collaborative learning platforms in the cloud. 
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